angular variables

angular variables
French\ \ variables angulaires
German\ \ Winkelvariablen
Dutch\ \ hoekvariabelen
Italian\ \ variabili angolari
Spanish\ \ variables angulares
Catalan\ \ variables angulars
Portuguese\ \ variáveis angulares
Romanian\ \ -
Danish\ \ kantede variabler
Norwegian\ \ kantet variabler
Swedish\ \ vinkelvariabel
Greek\ \ γωνιακές μεταβλητές
Finnish\ \ kulmamuuttujat
Hungarian\ \ szög változók
Turkish\ \ açısal değişkenler
Estonian\ \ nurkmuutujad
Lithuanian\ \ kampiniai kintamieji
Slovenian\ \ kotne spremenljivke
Polish\ \ zmienne kątowe
Russian\ \ тригонометрические переменные
Ukrainian\ \ -
Serbian\ \ -
Icelandic\ \ hyrndur breytur
Euskara\ \ angular aldagai
Farsi\ \ mot gh yerhaye zaviye-ee
Persian-Farsi\ \ -
Arabic\ \ متغيرات زاوية
Afrikaans\ \ hoekveranderlikes
Chinese\ \ 角 变 量
Korean\ \ -

Statistical terms. 2014.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Conjugate variables — For conjugate variables in context of thermodynamics, see Conjugate variables (thermodynamics). Conjugate variables are pairs of variables mathematically defined in such a way that they become Fourier transform duals of one another,[1][2] or more …   Wikipedia

  • Momento angular — El momento angular o momento cinético es una magnitud física importante en todas las teorías físicas de la mecánica, desde la mecánica clásica a la mecánica cuántica, pasando por la mecánica relativista. Su importancia en todas ellas se debe a… …   Wikipedia Español

  • Neutron transport — is the study of the motions and interactions of neutrons with materials. Nuclear scientists and engineers often need to know where neutrons are in an apparatus, what direction they are going, and how quickly they are moving. It is commonly used… …   Wikipedia

  • Bertrand's theorem — In classical mechanics, Bertrand s theorem [cite journal | author = Bertrand J | year = 1873 | title = Théorème relatif au mouvement d un point attiré vers un centre fixe.| journal = C. R. Acad. Sci.| volume = 77 | pages = 849 ndash;853] states… …   Wikipedia

  • mechanics — /meuh kan iks/, n. 1. (used with a sing. v.) the branch of physics that deals with the action of forces on bodies and with motion, comprised of kinetics, statics, and kinematics. 2. (used with a sing. v.) the theoretical and practical application …   Universalium

  • star — starless, adj. /stahr/, n., adj., v., starred, starring. n. 1. any of the heavenly bodies, except the moon, appearing as fixed luminous points in the sky at night. 2. Astron. any of the large, self luminous, heavenly bodies, as the sun, Polaris,… …   Universalium

  • quantum mechanics — quantum mechanical, adj. Physics. a theory of the mechanics of atoms, molecules, and other physical systems that are subject to the uncertainty principle. Abbr.: QM Cf. nonrelativistic quantum mechanics, relativistic quantum mechanics. [1920 25]… …   Universalium

  • Cosmic distance ladder — * Light green boxes: Technique applicable to star forming galaxies. * Light blue boxes: Technique applicable to Population II galaxies. * Light Purple boxes: Geometric distance technique. * Light Red box: The planetary nebula luminosity function… …   Wikipedia

  • Star — For other uses, see Star (disambiguation) …   Wikipedia

  • celestial mechanics — the branch of astronomy that deals with the application of the laws of dynamics and Newton s law of gravitation to the motions of heavenly bodies. [1815 25] * * * Branch of astronomy that deals with the mathematical theory of the motions of… …   Universalium

  • Noether's theorem — This article discusses Emmy Noether s first theorem, which derives conserved quantities from symmetries. For her related theorem on infinite dimensional Lie algebras and differential equations, see Noether s second theorem. For her unrelated… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”